

Continuous Process for Low-Cost, High-Quality YSZ Powder

Scott L. Swartz, Ph.D.
NexTech Materials, Ltd.
Lewis Center, OH

SECA Core Technology Workshop Tampa, Florida January 27-28, 2005

Project Details

Contract No.: DE-FC26-02NT41575
Project Monitor: Shawna Toth
Timeline: 10/1/2002 to 9/30/2005

Contact Information

(614) 842-6606 swartz@nextechmaterials.com www.nextechmaterials.com

R&D Objectives

Development of a low-cost synthesis process for YSZ electrolyte powder tailored or SOFC fabrication processes

Process Development

- Homogeneous precipitation
- Low-cost precursors
- Continuous where possible
- Aqueous
- Agile

Powder Quality Metrics

- Surface area: 10-15 m²/gram
- Average particle size: <0.5 microns</p>
- Sinterability: $\rho > 98\%$ at $T_S < 1300$ °C
- Conductivity: $\sigma > 0.05$ S/cm at 800°C

Issues being Addressed

- Low-cost scalable powder synthesis and production processes.
- Lower sintering temperatures.
- Effects of dopants and processing on conductivity and mechanical properties.
- Long-term degradation of conductivity of zirconia-based electrolytes.
- Tailoring of YSZ electrolyte powder for different SOFC fabrication processes.
- Batch-to-batch reproducibility.

Applicability to SOFC Commercialization

Different manufacturing processes are used for anode and electrolyte layers in SOFCs.

SECA Industry Team	Electrolyte Fabrication	Anode Fabrication
Delphi/Battelle	Tape Casting	Tape Casting
GE	Tape Calendaring	Tape Calendaring
Cummins/SOFCo	Tape Casting	Screen Printing
SWPC	Plasma-Spray	Plasma Spray
Fuel Cell Energy	Screen Printing	Tape Casting
Accumentrics	Dip Coating	Extrusion

Agile processing allows tailoring of YSZ powder production to the requirements of different SOFC fabrication methods

- Tape Casting Methods: Tight control of particle size distribution is important; relatively low surface areas needed for high green density.
- Co-Sintering Processes: Lower sintering temperatures are desired; control
 of sintering shrinkage rates is essential.
- Colloidal Deposition: Dispersion chemistry is critical; higher surface areas can be tolerated; tailored particle size distributions are beneficial.
- Plasma-Spray Methods: Large particle size and spherical morphology are required for optimum flow characteristics.
- Extrusion: Lower surface areas needed for dimensional control; particle size requirements vary by developer.
- Batch-to-batch reproducibility is essential for all processes!

Powder Synthesis and Processing

Homogeneous Precipitation

pH remains constant throughout process

Synthesis Process Variables

- Batch Size (typically 3-5 kg)
- Precipitation Conditions
- Chemical Purity (e.g., silica content)
- Dopants sintering aids
- Solvent System (water or alcohol)
- Drying Methods
- Calcination control of surface area
- Milling Methods particle size control

Non-Optimized Process

1 μm

As-Precipitated

Optimized Process

As-Precipitated

Calcined and Milled

Powder Evaluation Protocol

Powder Characterization

- Particle Size Distribution (centrifugal analysis)
- Surface Area (multi-point BET)
- Chemical Analysis (ICP)

Sintering Performance Studies

- Samples: pressed pellets or tape-cast substrates
- Temperature range: 1100 to 1400°C
- Density measurements by Archimedes method

Characterization of Sintered Ceramics

- Ionic conductivity (four-point method)
- Long-term conductivity testing
- Mechanical properties
- Microstructural analyses

Process Development Challenges

- Assuring "apples to apples" comparisons.
- Drying and milling processes are more efficient at larger production scales.
- Labor-intensive process at current scale of production.
- Complex relationships between precipitation variables on downstream processes.
- Difficult to achieve simultaneous control of surface area and particle size during milling.
- Lack of accelerated tests for long-term stability.

Ceramic Performance Studies

Process Development Studies

0.6

0.5

0.4

0.3

0.2

0.0

150

Average Particle Size (microns)

Summary of Results (to date)

- Established homogeneous precipitation process for synthesis of YSZ powders.
- Established calcination and milling methods to meet surface area and particle size targets.
- Achieved state-of-the-art performance levels, relative to commercially available YSZ powders:
 - Improved low-temperature sinterability
 - Achieved identical ionic conductivity values
- Demonstrated reproducibility of baseline process.
- Demonstrated potential for achieving manufacturing cost of less than \$25/kg target.
 - Identified cost drivers for process.

Manufacturing Cost Analysis

Plant Size: 500 MT/year

Fixed Capital Investment: \$11.2 M

Cost per kilogram: \$24.41

Future Plans

- Adapt process to scandium doped zirconia electrolyte compositions
- Demonstrations in SOFC fabrication processes
 - Tape casting
 - Ultrasonic spray deposition
- Scale-up to 5-kg batch sizes
- Production of evaluation samples for SECA industry teams
- Conduct manufacturing cost analysis on final process

Look who's interested in fuel cells!

Acknowledgments

- DOE/SECA
- Shawna Toth & Don Collins
- State of Ohio (Third Frontier Program)
- NexTech's Team
 - Lead Engineer: Michael Beachy
 - Scientific Support: Matt Seabaugh
 - Technical Support: NexTech's Fuel Cell Group